The Sato–Tate distribution in thin parametric families of elliptic curves
نویسندگان
چکیده
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملConstructing Families of Pairing-Friendly Elliptic Curves
We present a general method for constructing families of elliptic curves with prescribed embedding degree and prime order. We demonstrate this method by constructing curves of embedding degree k = 10, a value which has not previously appeared in the literature, and we show that our method applies to existing constructions for k = 3, 4, 6, and 12. We give evidence that our method is unlikely to ...
متن کاملIsomorphism Classes of Elliptic Curves Over a Finite Field in Some Thin Families
We give a non trivial upper bound for the number of elliptic curves Er,s : Y 2 = X3 + rX + s with (r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ] that are isomorphic to a given curve. We also give an almost optimal lower bound for the number of distinct isomorphic classes represented by elliptic curves Er,s with the coefficients r, s lying in a small box.
متن کاملFamilies of fast elliptic curves from Q-curves
We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the sameway asGallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducingQ-curves—curves over quadratic number fields without complex multiplication, butwith isogenies to their ...
متن کاملFamilies of Fast Elliptic Curves from ℚ-curves
We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducing Q-curves—curves over quadratic number fields without complex multiplication, but with isogenies to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2018
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-018-2042-0